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Abstract

Despite much recent progress on accurate
semantic role labeling, previous work has
largely used independent local classifiers,
possibly combined with separate label se-
quence models via Viterbi decoding. This
stands in stark contrast to the linguistic
observation that a core argument frame is
a joint structure, with strong dependen-
cies between arguments. We show how to
build a joint model of argument frames,
incorporating novel features that model
these interactions into discriminative log-
linear models. This system achieves an er-
ror reduction of

�����
on all arguments and�����

on core arguments over the best pub-
lished results for gold-standard parse trees
on PropBank.

1 Introduction

The release of semantic annotated corpora such
as FrameNet (Baker et al., 1998) and PropBank
(Palmer et al., 2003) has made it possible to develop
high-accuracy statistical models for automated se-
mantic role labeling (Gildea and Jurafsky, 2002;
Pradhan et al., 2004; Xue and Palmer, 2004).
Such systems have identified several linguistically-
motivated features for discriminating arguments and
their labels (see Table 1). These features usually
characterize aspects of individual arguments and the
predicate.

In addition to features of individual argument
nodes, previous work has explored the dependence
among classification decisions at different nodes
within a parse tree. It is evident that the labels and

the features of arguments are highly correlated. For
example, there are hard constraints – that arguments
cannot overlap with each other or the predicate, and
also soft constraints – for example, is it unlikely
that a predicate will have two or more AGENT ar-
guments, or that a predicate used in the active voice
will have a THEME argument prior to an AGENT

argument. Several systems have incorporated such
dependencies, for example, (Gildea and Jurafsky,
2002; Pradhan et al., 2004; Surdeanu et al., 2003;
Thompson et al., 2003). However, we show that
there are greater gains to be had by modeling joint
information about a verb’s argument structure.

We propose a discriminative log-linear joint
model for semantic role labeling, which incorpo-
rates more global features and achieves superior
performance in comparison to state-of-the-art mod-
els. To deal with the computational complexity of
the task, we employ dynamic programming and re-
ranking approaches. We present performance results
on the February 2004 version of PropBank on gold-
standard parse trees as well as results on automatic
parses generated by Collins’ parser.

2 Semantic Role Labeling: Task Definition
and Architectures

Consider the pair of sentences,

�	� The JM-Jaguar pact 
���
������ gives� the car market 
�� ���������������� a much-needed boost 
 ���������
�	�A much-needed boost 
 ��������� was given to� the car market 
�� ���������������

by � the JM-Jaguar pact 
���
������
Despite the different syntactic positions of the la-
beled phrases, we recognize that each plays the same



role – indicated by the label – in the meaning of
this particular sense of the verb give. We call such
phrases fillers of semantic roles and our task is,
given a sentence and a target verb, to return all such
phrases along with their correct labels. Therefore
one subtask is to group the words of a sentence into
phrases or constituents. As most previous work on
semantic role labeling, we assume the existence of a
separate parsing model that can assign a parse tree �
to each sentence, and the task then is to label each
node in the parse tree with the semantic role of the
phrase it dominates or NONE, if the phrase does not
fill any role. (Gildea and Palmer, 2002) have shown
that the use of parse trees greatly improves perfor-
mance. In the February 2004 version of the Prop-
Bank corpus, annotations are done on top of the
Penn TreeBank II parse trees. Possible labels of ar-
guments in this corpus are the core argument labels
ARG[0-5] and the modifier argument labels. There
are about

���
modifier labels such as ARGM-LOC and

ARGM-TMP, for location and temporal modifiers re-
spectively.1 Figure 1 shows an example parse tree
annotated with semantic roles.

One can separate semantic role labeling into iden-
tification and classification phases. In identification,
our task is to classify nodes of � as either ARG, an
argument, or NONE, a non-argument. In classifica-
tion, we are given a set of arguments in � and must
label each one with its appropriate semantic role.
We will view both phases as classification tasks on
structured input data, namely the tree � , and in the
sequel we will outline local and joint approaches for
both of these tasks. Let �����	��
 denote the function
from all labels such that ���
�	��
 =NONE if and only if� =NONE, and ���
�	��
 =ARG otherwise. If � is a vector
of labels for all nodes in � , �����	��
 denotes the vector
mapped into identification labels denoting argument
and non-argument assignments. We can decompose
the probability:

��� �����	��� ������
�� � � � �	���
�	�!
"� � ���#
%$� � � � �	�&� � ���
�'���
�	�!
�

into probabilities according to an identification
model

� �(� and a classification model
� � � � . This

decomposition does not encode any independence

1For a full listing of PropBank argument labels see (Palmer
et al., 2003)

assumptions, but is a useful way of thinking about
the problem. Our system for semantic role labeling
is based on this decomposition. Previous work has
also made this distinction because, for example, dif-
ferent features have been found to be more effective
for the two tasks, and it has been a good way to make
training and search during testing more efficient.

We discuss our probabilistic models for identifi-
cation and classification next. We start with local
models – ones that solve the task as independent la-
beling of nodes, and later introduce global models.

3 Local Classifiers

In the context of role labeling, we call a classi-
fier local if it assigns a label to an individual parse
tree node without knowledge of the labels of other
nodes. In the case of a probabilistic classifier, the
joint probability of an assignment of labels to all
parse tree nodes is the product of probabilities of
labels assigned to individual nodes:

� �	��� ������
)�*,+.-	/10 � �	�32(� � ���#
 .
In previous work, various machine learning meth-

ods have been used to learn local classifiers for role
labeling. Examples are linearly interpolated rela-
tive frequency models (Gildea and Jurafsky, 2002),
SVMs (Pradhan et al., 2004), decision trees (Sur-
deanu et al., 2003), and log-linear models (Xue
and Palmer, 2004). In this work we use log-linear
models for multi-class classification. One advan-
tage of log-linear models over SVMs for us is that
they produce probability distributions and can thus
be used in a pipeline architecture with identification
and classification phases in a more principled way.

The basic features we use are outlined in the
top part of Table 1 and pairs of these features can
be used to improve performance (Xue and Palmer,
2004). Recent work (Pradhan et al., 2004; Sur-
deanu et al., 2003), has also shown gains from addi-
tional features (see the middle part of Table 1) which
include many more lexicalized features as well as
constituent-relative features.

3.1 Resolving Constraints In Identification

In the PropBank corpus, argument constituents of
the same verb cannot overlap. However, the local
classifier does not take this constraint into account



Standard Features (Gildea and Jurafsky, 2002)

PHRASE TYPE: Syntactic Category of node
PREDICATE LEMMA: Stemmed Verb
PATH: Path from node to predicate
POSITION: Before or after predicate?
VOICE: Active or passive relative to predicate
HEAD WORD OF PHRASE

SUB-CAT: CFG expansion of predicate’s parent
Additional Features (Pradhan et al., 2004)

HEAD POS
FIRST/LAST PHRASE-TYPE/WORD/POS
LEFT/RIGHT SISTER PHRASE-TYPE/POS:
PARENT PHRASE-TYPE/POS
ORDINAL TREE DISTANCE: Phrase Type with

appended length of PATH feature
NODE-LCA PARTIAL PATH Path from constituent

to Lowest Common Ancestor with predicate node
Selected Pairs (Xue and Palmer, 2004)

PREDICATE LEMMA & PATH

PREDICATE LEMMA & HEAD WORD

PREDICATE LEMMA & PHRASE TYPE

VOICE & POSITION

Table 1: Baseline Feature

during classification and therefore may label two
overlapping nodes as ARGs. Therefore, to produce
a consistent set of arguments with local classifiers,
we must have a way of resolving overlapping argu-
ments. Previous work (Pradhan et al., 2004), has
locally resolved each overlap conflict greedily by
selecting the higher-confidence node. We propose
the following procedure which globally optimizes
our local classifiers’ confidence while respecting the
non-overlapping node constraint.

We can assign a log-probability to the total assign-
ment of nodes of � to � ARG,NONE � made by the local
classifier simply by adding log-probabilities of each
individual assignment; if we suppose that the proba-
bilities are indeed independent this sum corresponds
to the ����� joint probability of the assignment. We
compute the most likely assignment of nodes which
respects the no-overlap constraint using the follow-
ing simple procedure:

Suppose we want the most likely valid assignment
for subtree � with children trees ������	�	�	1����
 each stor-
ing the most likely valid assignment of nodes it dom-
inates as well as the log-probability of the assign-
ment of all nodes it dominates to NONE. The most
likely assignment for � is the one that corresponds to
the maximum of:

� The sum of the log-probabilities of the most

likely assignments of the children subtrees� � ��	�	�	 ����
 plus the log-probability for assigning
the node � to NONE

� The sum of the log-probabilities for assign-
ing all of � 2 ’s nodes to NONE plus the log-
probability for assigning the node � to ARG

Propagating this procedure from the leaves to the
root of � , we have our most likely non-overlapping
assignment.

3.2 New Proposed Features

We implemented several additional features to im-
prove the local classifiers’ performance. We used a
handful of tgrep expressions to detect dependency
relationships - such as subject and object - and de-
fine a DEPENDENCY feature that takes the value of
the relationship between the head of the constituent
and the predicate. Also, we noticed that often the
head word of a phrase is not the most semantically
informative one. By modifying Collins’ head propa-
gation rules, as given in (Collins, 1999), we derived
the SEMANTIC HEAD feature2 ; We also noticed that
the PATH feature gave different paths to the subject
when the lexical verb was deeply embedded in an in-
finitival clause or when used with auxiliary verbs. To
overcome this, we added a PROJECTED-PATH fea-
ture which is the path feature taken from the pro-
jected predicate constituent - the highest VP that has
the predicate as its SEMANTIC-HEAD. Similarly, we
utilize a PROJECTED-SUBCAT feature, which uses
the CFG production of the projected predicate’s par-
ent. We also used WordNet based features. The re-
sults showed a relatively modest increase in perfor-
mance between 	�
���	 ��� . We concluded that there
was probably not huge room left for improvement
in devising new basic features for individual con-
stituents, and chose to instead concentrate on fea-
tures that characterized the whole sequence of argu-
ments to be classified.

4 Joint Classifiers

Joint classifiers assign labels to all nodes in a parse
tree simultaneously and a classification is a joint as-
signment to all nodes.

2A similar feature is used in (Pradhan et al., 2004; Surdeanu
et al., 2003)



Discriminative Re-ranking

For argument identification, the number of possible
assignments for a parse tree with � nodes is 


+
. This

number can run into the hundreds of billions for a
normal-sized tree. For argument labeling, the num-
ber of possible assignments is � 
 ��� , if � is the
number of arguments of a verb (typically between

 and � ), and 
 � is the approximate number of pos-
sible labels if considering both core and modifying
arguments. Training a model which has such huge
number of classes is infeasible if the model does not
factorize due to strong independence assumptions.
Fortunately, most assignments can be ruled out by
simple models, and the number of plausible assign-
ments is much smaller.

Therefore, in order to be able to incorporate long-
range dependencies in our models, we chose to
adopt a re-ranking approach (Collins, 2000), which
selects from likely assignments generated from sim-
pler models making stronger independence assump-
tions. We use local identification and classification
models to generate top � most likely joint assign-
ments of labels.

Generation of top N most likely joint
assignments

The problem of generating the top N most likely
joint assignments of labels to nodes in a parse tree
given a local model

� �	�'� � �������'
 is more challenging
for argument identification, since we want to select
top � assignments that obey the non-overlapping
constraint. We do this by an exact dynamic pro-
gramming algorithm which is a slight modification
of the algorithm for finding the best consistent as-
signment described in section 3.1. Finding top N
joint assignments for argument classification, given
a set of argument nodes, is the same as in zero order
Markov models.

Parametric Models

We learn log-linear re-ranking models for joint
identification and classification, which use feature
maps from a parse tree and label sequence to a vec-
tor space. The form of the models is as follows:

Let � � � ���
�'��

	���
 denote a feature map from
a tree � , target verb � , and joint assignment � of
the nodes of the tree, to the vector space � 
 . Let

� �"�'���.������� �'� � denote � selected possible joint as-
signments. We learn a log-linear model with a pa-
rameter vector � , with one weight for each of the �
dimensions of the feature vector. The probability (or
score) of an assignment � according to this model is
defined as:

� �	�&� � ���#
 � ������� � � � ���
�'��
 ������ �"!
�$#&%&%&% # � ���'�(� � � �������'� � 
 �����

The score of an assignment � not in the top � is
zero. We used values of � between

���
and 
 � for

training. We train the model to maximize the sum
of log-likelihoods of the best assignments minus a
quadratic regularization term.

In this framework, we can define arbitrary fea-
tures of candidate node and label sequences that cap-
ture general properties of predicate-argument struc-
ture.

Joint Model Features

We use similar sequence features for joint identi-
fication and classification models. We will introduce
the features in the context of the example parse tree
shown in Figure 1. We include features that cap-
ture the correlation between the decisions at differ-
ent nodes in the parse tree. We model dependencies
not only between the label of a node and the labels
of other nodes, but also dependencies between the
label of a node and input features of other argument
nodes. The features are specified by instantiation of
templates and the value of a feature is the number of
times a particular pattern occurs in the labeled tree.

Templates

For a tree � , predicate � , and joint assignment �
of labels to the nodes of the tree, we define the can-
didate argument sequence as the sequence of non-
NONE labeled nodes � � � �'� � ��	�	�	 ��� � � � � �$� � �'� � 
 ( �32
is the label of node � 2 ). The candidate argument
sequence usually contains very few of the nodes in
the tree – about 
 to

�
nodes. To make it more

convenient to express our feature templates, we in-
clude the predicate node � in the sequence. This
sequence of labeled nodes is defined with respect
to the left-to-right order of constituents in the parse
tree. Since non-NONE labeled nodes do not over-
lap, there is a strict left-to-right order among these
nodes. For the example parse tree in Figure 1, if the



S �

NP � -ARG1

Final-hour trading

VP �

VBD � -PRED

accelerated

PP � - ARG4

TO �

to

NP �

108.1 million shares

NP � - ARGM-TMP

yesterday

Figure 1: An example tree from the PropBank with Semantic Role Annotations.

assignment of labels to the nodes is the correct as-
signment shown, the candidate argument sequence
will be � NP � -ARG � ,VBD � -PRED,PP � -ARG � ,NP � -ARGM-

TMP 
 in a model for joint classification, and � NP � -

ARG,VBD � -PRED,PP � -ARG,NP � -ARG 
 in a model for
joint identification.

Features from Local Models: All features included
in the local models are also included in our joint
models. In particular, each template for local fea-
tures is included as a joint template that concatenates
the local template and the node label. For example,
for the local feature PATH, we define a joint feature
template, that extracts PATH from every node and
concatenates it with the label of the node. When
comparing a local and a joint model, we use the
same set of local feature templates in the two mod-
els.

Whole Label Sequence: As observed in previous
work (Gildea and Jurafsky, 2002; Pradhan et al.,
2004), including information about the set or se-
quence of labels assigned to argument nodes should
be very helpful for disambiguation. For example, in-
cluding such information will make the model less
likely to pick multiple fillers for the same role or
to come up with a labeling that does not contain
an obligatory argument. We added a whole la-
bel sequence feature template that extracts the la-
bels of all argument nodes, and preserves informa-
tion about the position of the predicate. The tem-
plate also includes information about the voice of
the predicate. For example, this template will be
instantiated as � voice:active ARG � ,PRED,ARG � ,ARGM-

TMP 
 in a model for classification, and � voice:active

ARG,PRED,ARG,ARG 
 in a model for identification.
Note that in a model for identification, this feature
template has the effect of counting the number of ar-
guments to the left and right of the predicate, which
provides useful global information about argument

structure. As previously observed (Pradhan et al.,
2004), including modifying arguments in sequence
features is not helpful. This was confirmed in our
experiments and we redefined the whole label se-
quence features to exclude modifying arguments.

Additionally, we define variations of these feature
templates that concatenate the label sequence with
features of individual nodes. We experimented with
variations, and found that including the phrase type
and the head of a directly dominating PP – if one ex-
ists – was most helpful. We also experimented with
repetitions of the same label and bigrams. We report
the performance improvement using such sequence
features in Section 5, Table 2.

Frame Features: Another very effective class of fea-
tures we defined are features that look at the label of
a single argument node and internal features of other
argument nodes. The idea of these features is to cap-
ture knowledge about the label of a constituent given
the syntactic realization of all arguments of the verb.
This is helpful to capture syntactic alternations, such
as the dative alternation. For example, consider the
sentence (i) “ � Shaw Publishing 
�� � 
�� offered �Mr.
Smith 
 � � 
 � � a reimbursement 
 � � 
 � ” and the al-
ternative realization (ii)“ � Shaw Publishing 
 � � 
�� of-
fered � a reimbursement 
 � � 
 � � to Mr. Smith 
 � � 
 � ”.
When classifying the NP in object position, it is
useful to know whether the following argument is
a PP. If yes, the NP will more likely be an ARG1,
and if not, it will more likely be an ARG2. A
feature template that captures such information ex-
tracts, for each argument node, its phrase type and
label in the context of the phrase types for all other
arguments. For example, the instantiation of such
template for � a reimbursement 
 in (ii) would be� voice:active NP,PRED,NP-ARG � ,PP 
 . We also add a
template that concatenates the identity of the predi-
cate lemma itself. Another variation extracts internal



features and label for a focussed argument node, and
only place-holders for other argument nodes, thus
allowing conditioning of the label on the position of
the node in the argument sequence.

We should note that Xue and Palmer (2004) define
a similar feature template, called syntactic frame,
which often captures similar information. The im-
portant difference is that their template extracts con-
textual information from noun phrases surrounding
the predicate, rather than from the sequence of ar-
gument nodes. Because our model is joint, we are
able to use information about other argument nodes
when labeling a node.

Final Pipeline

To obtain a probabilistic model of complete assign-
ments of labels to nodes,

� � ��� �	��� ������
 , we chain
the models for identification

� �(� �	���
�	��
"� ������
 and
classification

� � � � �	�&� � ���
�'�����	��
�
 as described in
Section 2. In testing, in order to find the joint as-
signment � �

which maximizes the probability ac-
cording to the full

��� � model,
� � � �	���
�	�!
"� � ���#
&$� � � � �	�&� � ���
�'�����	��
�
 , we need to perform computa-

tionally expensive search. As done in previous work,
we perform a heuristic search by considering only
the top � joint identification labelings. We find an
approximate most likely assignment as follows:��� �	� � � � ��� �
���	�&� � ���#
����� �
� � �
����
 ��� /10������ 
 ������
 ����
 ����� 0 #  !�"� �

� �(� �	���
�	��
"� ������
�$
��� �
� � � � � � � � �	��� �������'���
�	��
�
 


We experimented with different numbers of top �
hypotheses considered, and our results showed high-
est performance for values of � around 4 to 10.
Exploring more hypotheses was slightly harmful,
which is probably due to the fact that our joint iden-
tification model is trained to distinguish only among
a few plausible ones.

5 Experiments and Results

For our experiments we used the February 2004 re-
lease of PropBank 3. As is standard, we used the
annotations from sections 02-21 as training data, 24
for development, and 23 for testing. In addition

3Although the first official release of PropBank was recently
released, we have not had time to test on it.

to reporting the standard results on individual ar-
gument precision, recall, and F-measure, we also
report Frame Accuracy (Fr. Acc.), the fraction of
sentences for which we successfully label all nodes.
There are reasons to prefer Frame Accuracy as a
measure of performance over individual-argument
statistics. Foremost, potential applications of role
labeling may require labeling of all arguments in a
sentence in order to be effective and partially correct
labelings may not be very useful.

We report results for three variations of the se-
mantic role labeling task. For CORE, we identify
and label only core arguments. For ARGM, we iden-
tify all arguments but label modifiers as only ARGM,
with no indication of the specific modifier type. In
ARGMPLUS, we identify and classify all arguments
with their specific labels. We report results for local
and joint models on argument identification, argu-
ment classification, and the complete identification
and classification pipeline. Our local identification
model utilizes the technique for resolving overlap-
ping nodes discussed in Section 3.1.

To illustrate the gains achieved by different joint
feature templates, we show in Table 2 the perfor-
mance on core arguments achieved when adding to
a local model the whole sequence and the frame fea-
tures. The local models used for these experiments
include only the standard features and selected pairs
(Xue and Palmer, 2004) shown in Table 1, and do not
include the additional (Pradhan et al., 2004) features
listed in that table. As seen from Table 2, the whole
sequence features reduced the error of the local ar-
gument classifier by

� ���
in F-measure and � � 	 ���

in whole frame accuracy. The addition of the frame
features achieved an additional 
 ��� error reduction
in F-measure. For argument identification, the im-
provement from joint features was smaller (

� � 	 ���
error reduction). The labeling of the tree in Figure
1 is a specific example of the kind of errors fixed
by the joint models. The local classifier labeled the
first argument in the tree as ARG0 instead of ARG1,
probably because an ARG0 label is more likely for
the subject position.

In Tables 3, 4, and 5, we report the performance
of local and joint models for argument identification,
classification, and integrated semantic role labeling,
using all of the features in Table 1. All joint mod-



els for these experiments used the whole sequence
and frame features. The largest improvement due to
joint modeling is in classification for core arguments
–

� � 	�
 � error reduction. On the complete pipeline
the joint models achieved error reductions of 
�� �
for CORE,

� � 	 � � for ARGM, and
��� 	�� � for ARGM-

PLUS. The best published result on integrated argu-
ment identification and classification for core argu-
ments for gold standard parse trees is � � 	�� � (Xue
and Palmer, 2004), and our joint model achieves a�����

error reduction from it. The best reported re-
sult on all arguments is ��� 	 � � (Pradhan et al., 2004)
and our joint model reduces its error by

�����
.

We also report preliminary results on automatic
parses (see Table 6). We tested – but did not train on
– automatic parse trees from Collins’ parser. For ap-
proximately 11.2% of the argument constituents in
the test set, we could not find exact matches in the
automatic parses. Instead of discarding these argu-
ments, we took the largest constituent in the auto-
matic parse having the same head-word as the gold-
standard argument constituent. Although joint infer-
ence showed gains for automatic parses in this set-
ting, we expect it would help more when we also
train the models on automatic parses.

6 Discussion

During error analysis, we noticed that many of the
difficult argument constituents were annotated with
functional tags, which provide additional syntactic
and semantic information in the TreeBank II gold
standard parses. It is common to strip these tags
from the trees in pre-processing since automatic
parsers do not generally assign such tags. We hy-
pothesized that such tags would be useful for the
features like phrase type, path, subcat, etc. , which
utilize the category of phrases, and ran a simple ex-
periment where we left them in for training and test-
ing with local classifiers. The results showed con-
siderable gains for classification and slight gains for
identification (see Table 7). We are aware of only
one attempt (Blaheta and Charniak, 2000) to auto-
matically tag phrases with the Treebank functional
tags. Perhaps this task should receive more atten-
tion, in light of its potential application to SRL and
other related areas. In future work, we plan to test
if we can get comparable gains by using functional

tagging with a learned classifier.

7 Conclusions

Reflecting linguistic intuition and in line with cur-
rent work, we have shown that there are substantial
gains to be had by jointly modeling the argument
frames of verbs. This is especially true when we
model the dependencies with discriminative models
capable of incorporating long-distance features.
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Model Classification Identification
Fr. Acc. F-Measure Fr. Acc. F-Measure

Local 90.3% 94.4 % 81.7% 94.3 %
+ Whole Sequence Features 95.7% 96.7 % 86.0% 95.0%
+ Frame Features 96.8% 97.6 % 86.5% 95.2%

Table 2: Test set identification and classification results on CORE arguments when varying joint feature
templates.

Model CORE ARGM

Fr. Acc. F-Measure Prec. Recall Fr. Acc. F-Measure Prec Recall

Local 84.1% 95.1% 95.6% 94.6% 81.2% 95.1% 95.7% 94.5%
Joint 88.6% 96.1% 96.0% 96.2% 84.6% 95.6% 96.0% 95.2%

Table 3: Argument identification results on section 
 � (gold-standard parses).

Model CORE ARGM ARGMPLUS

Fr. Acc. Arg. Acc. Fr. Acc. Arg. Acc. Fr. Acc. Arg. Acc.

Local 92.6% 95.7% 90.7% 96.0 85.2 % 93.4%
Joint 96.7% 97.6% 95.1% 97.5% 89.0 % 94.9%

Table 4: Argument classification results on section 
 � (gold-standard parses).

Model CORE ARGM ARGMPLUS

Fr. Acc. F-Measure Fr. Acc. F-Measure Fr. Acc. F-Measure

Local 79.8% 91.8% 75.6% 91.9% 72.0% 89.7%
Joint 86.8% 94.1% 81.6% 93.4% 77.3% 91.2%

Table 5: Argument identification and classification results on section 
 � (gold-standard parses).

Model CORE

Fr. Acc. F-Measure

Local 63.3 % 82.8 %
Joint 69.9 % 84.3 %

Table 6: Preliminary argument identification and classification results for CORE arguments on section 
 �
(Collins’ automatic parses).

Condition Identification Classification
F-Measure Fr. Acc. Arg. Acc. Fr. Acc.

With Functional Tags 94.9% 79.4% 94.2% 86.7%
No Functional Tags 94.7% 78.9% 90.7% 79.4%

Table 7: Results from functional tag experiment on the test set with standard features + selected pairs from
Table 1 on ARGMPLUS


